Como calcular médias móveis no Excel Análise de dados do Excel para Dummies, 2ª edição O comando Análise de dados fornece uma ferramenta para calcular movimentação e médias exponencialmente suavizadas no Excel. Suponha, por uma questão de ilustração, que você tenha coletado informações diárias sobre temperatura. Você quer calcular a média móvel de três dias 8212 a média dos últimos três dias 8212 como parte de algumas previsões meteorológicas simples. Para calcular médias móveis para este conjunto de dados, execute as seguintes etapas. Para calcular uma média móvel, clique primeiro no botão de comando Dados da análise de dados tab8217s. Quando o Excel exibe a caixa de diálogo Análise de dados, selecione o item Média móvel da lista e clique em OK. O Excel exibe a caixa de diálogo Média móvel. Identifique os dados que você deseja usar para calcular a média móvel. Clique na caixa de texto Intervalo de entrada da caixa de diálogo Média móvel. Em seguida, identifique o intervalo de entrada, digitando um endereço de intervalo de planilha ou usando o mouse para selecionar o intervalo de planilha. Sua referência de intervalo deve usar endereços de célula absolutos. Um endereço de célula absoluto precede a letra da coluna eo número da linha com sinais, como em A1: A10. Se a primeira célula do seu intervalo de entrada incluir uma etiqueta de texto para identificar ou descrever os dados, marque a caixa de seleção Etiquetas na primeira linha. Na caixa de texto Intervalo, informe ao Excel quantos valores devem ser incluídos no cálculo da média móvel. Você pode calcular uma média móvel usando qualquer número de valores. Por padrão, o Excel usa os três valores mais recentes para calcular a média móvel. Para especificar que algum outro número de valores seja usado para calcular a média móvel, insira esse valor na caixa de texto Intervalo. Diga ao Excel onde colocar os dados da média móvel. Use a caixa de texto Range de saída para identificar o intervalo de planilha no qual você deseja colocar os dados de média móvel. No exemplo da folha de cálculo, os dados da média móvel foram colocados na gama de folhas de cálculo B2: B10. (Opcional) Especifique se deseja um gráfico. Se você quiser um gráfico que traça a informação da média móvel, marque a caixa de seleção Saída do gráfico. (Opcional) Indique se você deseja que as informações de erro padrão sejam calculadas. Se você deseja calcular erros padrão para os dados, marque a caixa de seleção Erros Padrão. O Excel coloca valores de erro padrão ao lado dos valores da média móvel. (As informações de erro padrão passam para C2: C10.) Depois de concluir especificando quais informações de média móvel você deseja calcular e onde deseja colocá-las, clique em OK. O Excel calcula as informações da média móvel. Nota: Se o Excel não possui informações suficientes para calcular uma média móvel para um erro padrão, ele coloca a mensagem de erro na célula. Você pode ver várias células que mostram esta mensagem de erro como um value. Add uma tendência ou linha média móvel para um gráfico Aplica-se a: Excel 2016 Word 2016 PowerPoint 2016 Excel 2013 Word 2013 Outlook 2013 PowerPoint 2013 Mais. Menos Para mostrar tendências de dados ou médias móveis em um gráfico que você criou. Você pode adicionar uma linha de tendência. Você também pode estender uma linha de tendência além de seus dados reais para ajudar a prever valores futuros. Por exemplo, a seguinte linha de tendência linear prevê dois trimestres à frente e mostra claramente uma tendência ascendente que parece promissora para as vendas futuras. Você pode adicionar uma linha de tendência a um gráfico 2-D que não está empilhado, incluindo área, barra, coluna, linha, estoque, dispersão e bolha. Você não pode adicionar uma linha de tendência a um mapa de 3-D, radar, torta, superfície ou donut empilhados. Adicionar uma linha de tendência No gráfico, clique na série de dados à qual pretende adicionar uma linha de tendência ou uma média móvel. A linha de tendência começará no primeiro ponto de dados da série de dados que você escolher. Marque a caixa Trendline. Para escolher um tipo diferente de linha de tendência, clique na seta ao lado de Trendline. E clique em Exponencial. Previsão Linear. Ou média móvel de dois períodos. Para linhas de tendência adicionais, clique em Mais opções. Se escolher Mais opções. Clique na opção desejada no painel Formato da linha de tendência em Opções da linha de tendência. Se você selecionar Polynomial. Digite a potência mais alta para a variável independente na caixa Ordem. Se você selecionar Média Móvel. Digite o número de períodos a serem usados para calcular a média móvel na caixa Período. Dica: Uma linha de tendência é mais precisa quando seu valor R-quadrado (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos seus dados reais) é igual ou próximo de 1. Quando você adiciona uma linha de tendência aos seus dados , O Excel calcula automaticamente o seu valor R-quadrado. Você pode exibir esse valor em seu gráfico, marcando a caixa Mostrar o valor R-quadrado na caixa de gráfico (painel Formato da linha de tendência, Opções da linha de tendência). Você pode aprender mais sobre todas as opções de linha de tendência nas seções abaixo. Linhas de tendência linear Use este tipo de linha de tendência para criar uma linha reta com o melhor ajuste para conjuntos de dados lineares simples. Seus dados são lineares se o padrão em seus pontos de dados se parecer com uma linha. Uma linha de tendência linear geralmente mostra que algo está aumentando ou diminuindo a uma taxa constante. Uma linha de tendência linear usa esta equação para calcular o ajuste de mínimos quadrados para uma linha: onde m é a inclinação eb é a interceptação. A seguinte linha de tendência linear mostra que as vendas de geladeiras têm aumentado consistentemente ao longo de um período de 8 anos. Observe que o valor R-squared (um número de 0 a 1 que revela quão próximos os valores estimados para a linha de tendência correspondem aos dados reais) é 0.9792, que é um bom ajuste da linha aos dados. Mostrando uma linha curva melhor ajustada, esta linha de tendência é útil quando a taxa de alteração nos dados aumenta ou diminui rapidamente e, em seguida, nivela para fora. Uma linha de tendência logarítmica pode usar valores negativos e positivos. Uma linha de tendência logarítmica usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e ln é a função de logaritmo natural. A seguinte linha de tendência logarítmica mostra o crescimento populacional predito de animais em uma área de espaço fixo, onde a população nivelada como espaço para os animais diminuiu. Observe que o valor R-quadrado é 0.933, que é um ajuste relativamente bom da linha para os dados. Essa linha de tendência é útil quando os dados flutuam. Por exemplo, quando você analisa ganhos e perdas em um grande conjunto de dados. A ordem do polinômio pode ser determinada pelo número de flutuações nos dados ou por quantas curvas (colinas e vales) aparecem na curva. Tipicamente, uma linha de tendência polinomial da Ordem 2 tem apenas uma colina ou vale, uma Ordem 3 tem uma ou duas colinas ou vales, e uma Ordem 4 tem até três colinas ou vales. Uma linha de tendência polinomial ou curvilínea usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde b e são constantes. A seguinte linha de tendência polinomial da Ordem 2 (uma colina) mostra a relação entre a velocidade de condução eo consumo de combustível. Observe que o valor R-quadrado é 0,979, que é próximo a 1, portanto, as linhas um bom ajuste para os dados. Mostrando uma linha curva, esta linha de tendência é útil para conjuntos de dados que comparam medidas que aumentam a uma taxa específica. Por exemplo, a aceleração de um carro de corrida em intervalos de 1 segundo. Você não pode criar uma linha de tendência de energia se seus dados contiverem valores zero ou negativos. Uma linha de tendência de energia usa essa equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes. Nota: Esta opção não está disponível quando os dados incluem valores negativos ou zero. O gráfico de medição de distância a seguir mostra a distância em metros por segundos. A linha de tendência de energia demonstra claramente a crescente aceleração. Observe que o valor R-quadrado é 0.986, que é um ajuste quase perfeito da linha para os dados. Mostrando uma linha curva, esta linha de tendência é útil quando os valores de dados sobem ou descem em taxas constantemente crescentes. Você não pode criar uma linha de tendência exponencial se seus dados contiverem valores zero ou negativos. Uma linha de tendência exponencial usa esta equação para calcular o ajuste de mínimos quadrados através de pontos: onde c e b são constantes e e é a base do logaritmo natural. A linha de tendência exponencial seguinte mostra a quantidade decrescente de carbono 14 num objecto à medida que envelhece. Observe que o valor R-quadrado é 0,990, o que significa que a linha se encaixa os dados quase perfeitamente. Moving Average trendline Esta linha de tendência evens out flutuações em dados para mostrar um padrão ou tendência mais claramente. Uma média móvel usa um número específico de pontos de dados (definido pela opção Período), os calcula em média e usa o valor médio como um ponto na linha. Por exemplo, se Período é definido como 2, a média dos dois primeiros pontos de dados é usada como o primeiro ponto na linha de tendência de média móvel. A média do segundo e terceiro pontos de dados é usada como o segundo ponto da linha de tendência, etc. Uma linha de tendência de média móvel usa esta equação: O número de pontos em uma linha de tendência de média móvel é igual ao número total de pontos na série, Número que você especificar para o período. Em um gráfico de dispersão, a linha de tendência é baseada na ordem dos valores x no gráfico. Para obter um resultado melhor, classifique os valores x antes de adicionar uma média móvel. A seguinte linha de tendência de média móvel mostra um padrão no número de casas vendidas ao longo de um período de 26 semanas. Média de Móvel Este exemplo ensina como calcular a média móvel de uma série de tempo no Excel. Uma média móvel é usada para suavizar irregularidades (picos e vales) para reconhecer facilmente as tendências. 1. Primeiro, vamos dar uma olhada em nossa série de tempo. 2. No separador Dados, clique em Análise de dados. Nota: não é possível encontrar o botão Análise de dados Clique aqui para carregar o suplemento do Analysis ToolPak. 3. Selecione Média móvel e clique em OK. 4. Clique na caixa Intervalo de entrada e selecione o intervalo B2: M2. 5. Clique na caixa Intervalo e escreva 6. 6. Clique na caixa Output Range e seleccione a célula B3. 8. Faça um gráfico destes valores. Explicação: porque definimos o intervalo como 6, a média móvel é a média dos 5 pontos de dados anteriores eo ponto de dados atual. Como resultado, os picos e vales são suavizados. O gráfico mostra uma tendência crescente. O Excel não consegue calcular a média móvel para os primeiros 5 pontos de dados porque não existem pontos de dados anteriores suficientes. 9. Repita os passos 2 a 8 para intervalo 2 e intervalo 4. Conclusão: Quanto maior o intervalo, mais os picos e vales são suavizados. Quanto menor o intervalo, mais perto as médias móveis são para os pontos de dados reais. Criando um Movimento Simples Este é um dos três artigos a seguir sobre Análise de Séries Temporais no Excel Visão geral da Média Móvel A média móvel é uma técnica estatística usada para suavizar As flutuações de curto prazo em uma série de dados, a fim de mais facilmente reconhecer tendências ou ciclos de longo prazo. A média móvel é por vezes referida como uma média móvel ou uma média corrente. Uma média móvel é uma série de números, cada um dos quais representa a média de um intervalo de número especificado de períodos anteriores. Quanto maior o intervalo, mais suavização ocorre. Quanto menor o intervalo, mais a média móvel se assemelha à série de dados reais. As médias móveis executam as três funções a seguir: Suavização dos dados, o que significa melhorar o ajuste dos dados a uma linha. Reduzindo o efeito da variação temporária e do ruído aleatório. Destaque outliers acima ou abaixo da tendência. A média móvel é uma das técnicas estatísticas mais utilizadas na indústria para identificar tendências de dados. Por exemplo, os gerentes de vendas geralmente visualizam médias móveis de três meses de dados de vendas. O artigo irá comparar uma média móvel de dois meses, três meses e seis meses simples dos mesmos dados de venda. A média móvel é usada com bastante frequência na análise técnica de dados financeiros, como retornos de ações e em economia, para localizar tendências em séries macroeconômicas como o emprego. Há uma série de variações da média móvel. Os mais comumente empregados são a média móvel simples, a média móvel ponderada ea média móvel exponencial. Executar cada uma dessas técnicas no Excel será abordado em detalhes em artigos separados neste blog. Aqui está uma breve visão geral de cada uma dessas três técnicas. Média Móvel Simples Cada ponto em uma média móvel simples é a média de um número especificado de períodos anteriores. Este artigo de blog fornecerá uma explicação detalhada da implementação desta técnica no Excel. Média móvel ponderada Os pontos na média móvel ponderada também representam uma média de um número especificado de períodos anteriores. A média móvel ponderada aplica uma ponderação diferente a certos períodos anteriores, muitas vezes os períodos mais recentes recebem maior peso. Um link para outro artigo neste blog que fornece uma explicação detalhada da implementação desta técnica no Excel é a seguinte: Média móvel exponencial Pontos na média móvel exponencial também representam uma média de um número especificado de períodos anteriores. A suavização exponencial aplica fatores de ponderação a períodos anteriores que diminuem exponencialmente, nunca atingindo zero. Como resultado, a suavização exponencial leva em conta todos os períodos anteriores em vez de um número designado de períodos anteriores que a média móvel ponderada faz. Um link para outro artigo neste blog que fornece uma explicação detalhada da implementação desta técnica no Excel é a seguinte: O seguinte descreve o processo de 3 etapas de criar uma média móvel simples de dados de séries temporais no Excel Etapa 1 8211 Graph Os dados originais em um gráfico de séries temporais O gráfico de linhas é o gráfico de Excel mais utilizado para representar gráficos de dados de séries temporais. Um exemplo de um gráfico do Excel usado para plotar 13 períodos de dados de vendas é mostrado da seguinte forma: Etapa 2 8211 Criar a média móvel no Excel O Excel fornece a ferramenta Média móvel no menu Análise de dados. A ferramenta Média Móvel cria uma média móvel simples a partir de uma série de dados. A caixa de diálogo Média Móvel deve ser preenchida da seguinte forma para criar uma média móvel dos 2 períodos anteriores de dados para cada ponto de dados. A saída da média móvel de 2 períodos é apresentada da seguinte forma, juntamente com as fórmulas que foram utilizadas para calcular o valor de cada ponto na média móvel. Etapa 3 8211 Adicionar a série de média móvel ao gráfico Esses dados devem agora ser adicionados ao gráfico que contém os dados da linha de tempo original de vendas. Os dados serão simplesmente adicionados como mais uma série de dados no gráfico. Para fazer isso, clique com o botão direito do mouse em qualquer lugar no gráfico e um menu será exibido. Clique em Selecionar dados para adicionar a nova série de dados. A série de média móvel será adicionada preenchendo a caixa de diálogo Edit Series da seguinte maneira: O gráfico que contém a série de dados original ea média móvel simples de 2 intervalos de dados é mostrado da seguinte forma. Observe que a linha de média móvel é bastante mais suave e os desvios de dados brutos acima e abaixo da linha de tendência são muito mais aparentes. A tendência geral é agora muito mais aparente também. Uma média móvel de 3 intervalos pode ser criada e colocada no gráfico usando o mesmo procedimento da seguinte maneira: É interessante observar que a média móvel simples de 2 intervalos cria um gráfico mais suave que a média móvel simples de 3 intervalos. Neste caso, a média móvel simples de 2 intervalos pode ser mais desejável do que a média móvel de 3 intervalos. Para comparação, uma média móvel simples de 6 intervalos será calculada e adicionada ao gráfico da mesma maneira como segue: Como esperado, a média móvel simples de 6 intervalos é significativamente mais suave do que as médias móveis simples de 2 ou 3 intervalos. Um gráfico mais suave se encaixa mais diretamente em uma linha reta. Analisando Precisão de Precisão A precisão pode ser descrita como bondade de ajuste. Os dois componentes da precisão de previsão são os seguintes: Tendência de previsão 8211 A tendência de uma previsão ser consistentemente maior ou menor que os valores reais de uma série de tempo. O viés de previsão é a soma de todo o erro dividido pelo número de períodos como segue: Um viés positivo indica uma tendência para a subprevisão. Um viés negativo indica uma tendência para sobre-previsão. O viés não mede a precisão porque os erros positivos e negativos se cancelam mutuamente. Erro de Previsão 8211 A diferença entre os valores reais de uma série temporal e os valores previstos da previsão. As medidas mais comuns de erro de previsão são as seguintes: MAD 8211 Desvio absoluto médio MAD calcula o valor absoluto médio do erro e é calculado com a seguinte fórmula: A média dos valores absolutos dos erros elimina o efeito de cancelamento de erros positivos e negativos. Quanto menor for MAD, melhor será o modelo. MSE 8211 Mean Squared Error MSE é uma medida popular de erro que elimina o efeito de cancelamento de erros positivos e negativos somando os quadrados do erro com a seguinte fórmula: Os termos de grande erro tendem a exagerar MSE porque os termos de erro são todos ao quadrado. RMSE (Root Mean Square) reduz esse problema, tomando a raiz quadrada de MSE. MAPE 8211 Percentagem absoluta média MAPE também elimina o efeito de cancelamento de erros positivos e negativos somando os valores absolutos dos termos de erro. O MAPE calcula a soma dos termos de erro percentual com a seguinte fórmula: Ao somar os termos de erro percentual, o MAPE pode ser usado para comparar modelos de previsão que usam diferentes escalas de medição. Calculando Bias, MAD, MSE, RMSE e MAPE no Excel Para o Bias de Média Móvel Simples, MAD, MSE, RMSE e MAPE serão calculados no Excel para avaliar o intervalo simples de 2 intervalos, 3 intervalos e 6 intervalos Média obtida neste artigo e mostrada da seguinte forma: O primeiro passo é calcular E t. E t 2. E t, E t Y t-act. E, em seguida, somá-los da seguinte forma: Bias, MAD, MSE, MAPE e RMSE podem ser calculados da seguinte forma: Os mesmos cálculos são agora realizados para calcular Bias, MAD, MSE, MAPE e RMSE para a média móvel simples de 3 intervalos. Os mesmos cálculos são agora realizados para calcular Bias, MAD, MSE, MAPE e RMSE para a média móvel simples de 6 intervalos. Bias, MAD, MSE, MAPE e RMSE são resumidos para as médias móveis simples de 2 intervalos, 3 intervalos e 6 intervalos como se segue. A média móvel simples de 3 intervalos é o modelo que mais se ajusta aos dados reais. 160 Excel Master Series Blog Diretório Estatística Tópicos e artigos em cada tópico
Comments
Post a Comment